
Tutorial: Arduino and the I2C bus Tutorial-1

This article is actually chapter twenty of a series

originally titled “Getting Started/Moving Forward with

Arduino!” by John Boxall – A tutorial on the Arduino universe

taken and edited from http://tronixstuff.wordpress.com.

Today we are going to start investigating the I2C data bus,

and how we can control devices using it with our Arduino

systems. The I2C bus can be a complex interface to master, so

I will do my best to simplify it for you. In this article we

will learn the necessary theory, and then apply it by

controlling a variety of devices. Furthermore it would be in

your interest to have an understanding of the binary, binary-

coded decimal and hexadecimal number systems.

But first of all, what is it?

I2C is an acronym for “Inter-Integrated Circuit”. In the late

1970s, Philips’ semiconductor division (now NXP) saw the need

for simplifying and standardizing the data lines that travel

between various integrated circuits in their products. Their

solution was the I2C bus. This reduced the number of wires to

two (SDA – data, and SCL – clock). Here is a nice

introductory video from NXP:

Why would we want to use I2C devices?

As there are literally thousands of components that use the

I2C interface! For example, click these supplier links to

have a look at the range: NXP, Farnell, Digikey, Mouser,

and RS.

And our Arduino boards can control them all. There are many

applications, such a real-time clocks, digital

potentiometers, temperature sensors, digital

compasses, memory chips, FM radio circuits, I/O expanders,

LCD controllers, amplifiers, and so on. And you can have more

http://tronixstuff.wordpress.com/2010/10/20/tutorial-arduino-and-the-i2c-bus/
http://arduino.cc/
http://tronixstuff.wordpress.com/
http://en.wikipedia.org/wiki/Binary_numeral_system#Decimal
http://www.nxp.com/profile/
http://ics.nxp.com/interface/#I2C
http://bit.ly/coMhLw
http://bit.ly/dxRU4i
http://bit.ly/8Z7CKq
http://bit.ly/ayXWSl

than one on the bus at any time, in fact the maximum number

of I2C devices used at any one time is 112.

From a hardware perspective, the wiring is very easy. Those

of you with an Arduino Duemilanove, Uno or100% compatible

board, you will be using pins A4 for SDA (data) and A5 for

SCL (clock).

If you are using an Arduino Mega, SDA is pin 20 and SCL is

21, so note that shields with I2C need to be specifically

for the Mega. If you have another type of board, check your

data sheet or try the Arduino team’s hardware website. And

finally, if you are using a bare DIP ATmega328-PU

microcontroller, you will use pins 27 for SDA and 28 for SCL.

The bus wiring is simple:

http://www.littlebirdelectronics.com/products/Arduino-Uno.html
http://www.littlebirdelectronics.com/products/Freetronics-TwentyTen.html
http://www.littlebirdelectronics.com/products/Freetronics-TwentyTen.html
http://littlebirdelectronics.com/products/arduino-mega-2560
http://arduino.cc/en/Main/Hardware
http://www.littlebirdelectronics.com/products/ATmega328-with-Arduino-Bootloader.html
http://tronixstuff.files.wordpress.com/2010/10/i2carduinopinsss.jpg

If you are only using one I2C device, the pull-up resistors

are not required, as the ATmega328 microcontroller in our

Arduino has them built-in. However if you are running a

string of devices then use two 10 kilo ohm resistors. Like

anything, some testing on a breadboard or prototype circuit

will determine their necessity. The maximum length of an I2C

bus is around one meter, and is a function of the capacitance

of the bus. This distance can be extended with the use of a

special IC, which we will examine during the next I2C

chapter.

Each device can be connected to the bus in any order, and

devices can be masters or slaves. In our Arduino situation,

the board is the master and the devices on the I2C bus are

the slaves. We can write data to a device, or read data from

a device. By now you should be thinking “how do we

differentiate each device on the bus?”… Each device has a

unique address. We use that address in the functions

described later on to direct our read or write requests to

the correct device. It is possible to use two devices with

identical addresses on an I2C bus, but that will be discussed

in a later article.

As like most devices, we make use of an Arduino library, in

this case <wire.h>. Then use the

function Wire.begin(); inside of void setup() and we’re ready

to go.

Sending data from our Arduino to the I2C devices requires two

things: the unique device address (we need this in hexadecimal)

and at least one byte of data to send. For example, the address

of the part in example 1 (below) is 00101111 (binary) which is

0X2F in hexadecimal. Then we want to set the wiper value, which

is a value between 0 and 127, or 0×00 and 0x7F in hexadecimal.

So to set the wiper to zero, we would use the following three

functions:

http://arduino.cc/en/Reference/Wire

Wire.beginTransmission(0x2F); // part address is 0x2F or

0101111b

This sends the device address down the SDA (data) line of the

bus. It travels along the bus, and “notifies” the matching

device that it has some data coming…

Wire.send(69);

This sends the byte of data to the device – into the

device register (or memory of sorts), which is waiting for it

with open arms. Any other devices on the bus will ignore

this. Note that you can only perform one I2C operation at a

time! Then when we have finished sending data to the device,

we “end transmission”. This tells the device that we’re

finished, and frees up the I2C bus for the next operation:

Wire.endTransmission();

Some devices may have more than one register, and require

more bytes of data in each transmission. For example, the

DS1307 real-time clock IC has eight registers to store timing

data, each requiring eight bits of data (one byte):

However with the DS1307 - the entire lot need to be rewritten

every time. So in this case we would use

eightwire.send(); functions every time. Each device will

interpret the byte of data sent to it, so you need the data

sheet for your device to understand how to use it.

Receiving data from an I2C device into our Arduino requires

two things: the unique device address (we need this in

hexadecimal) and the number of bytes of data to accept from

the device. Receiving data at this point is a two stage

process. If you review the table above from the DS1307 data

sheet, note that there is eight registers, or bytes of data

in there. The first thing we need to do is have the I2C

device start reading from the first register, which is done

by sending a zero to the device:

Wire.beginTransmission(device_address);

Wire.send(0);

Wire.endTransmission();

Now the I2C device will send data from the first register

when requested. We now need to ask the device for the data,

and how many bytes we want. For example, if a device held

three bytes of data, we would ask for three, and store each

byte in its own variable (for example, we have three

variables of type byte: a, b, and c. The first function to

execute is:

Wire.requestFrom(device_address, 3);

Which tells the device to send three bytes of data back to

the Arduino. We then immediately follow this with:

*a = Wire.receive();

*b = Wire.receive();

*c = Wire.receive();

We do not need to use Wire.endTransmission(); when reading

data. Now that the requested data is in their respective

variables, you can treat them like any ordinary byte

variable.

For a more detailed explanation of the I2C bus, read

this explanatory document by NXP. Now let’s use our I2C

knowledge by controlling a range of devices…

 Example 1

A new part for today, the Microchip MCP4018T digital linear

potentiometer. The value of this model is 10 kilo ohms.

Inside this tiny, tiny SMD part is a resistor array

consisting of 127 elements and a wiper that we control by

sending a value of between 0 and 127 (in hexadecimal) down

the I2C bus. This is a volatile digital potentiometer, it

forgets the wiper position when the power is removed. However

naturally there is a compromise with using such a small part,

it is only rated for 2.5 milliamps – but used in conjunction

http://tronixstuff.files.wordpress.com/2010/10/nxp_i2c.pdf
http://bit.ly/cquvTU

with op amps and so on. For more information, please consult

the data sheet.

As this is an SMD part, for breadboard prototyping purposes

it needed to be mounted on a breakout board. Here it is in

raw form:

Above the IC is a breakout board. Consider that the graph

paper is 5mm square! It is the incorrect size, but all I

have. However soldering was bearable. Put a drop of solder on

one pad of the breakout board, then hold the IC with tweezers

in one hand, and reheat the solder with the other hand – then

push the IC into place. A few more tiny blobs of solder over

the remaining pins, and remove the excess with solder wick.

Well … it worked for me:

http://tronixstuff.files.wordpress.com/2010/10/digital-pot.pdf
http://bit.ly/c4vIMp
http://tronixstuff.files.wordpress.com/2010/10/mcp4018raw.jpg

Our example schematic is as follows:

As you can see, the part is simple to use, your signal enters

pin 6 and the result of the voltage division is found on pin

5. Please note that this is not a replacement for a typical

mechanical potentiometer, we can’t just hook this up as a

volume or motor-speed control! Again, please read the data

sheet.

Control is very simple, we only need to send one byte of data

down, the hexadecimal reference point for the wiper, e.g.:

http://tronixstuff.files.wordpress.com/2010/10/digital-pot.pdf
http://tronixstuff.files.wordpress.com/2010/10/digital-pot.pdf
http://tronixstuff.files.wordpress.com/2010/10/mcp4018cooked.jpg
http://tronixstuff.files.wordpress.com/2010/10/mcp4018sch.jpg

Wire.beginTransmission(0x2F); // part address is 0x2F or

0101111b

Wire.send(0x3F); //

Wire.endTransmission();

Here is a quick demonstration that moves the wiper across all

points: (download)

/*

Example Microchip MCP4018 digital potentiometer demonstration

sketch

http://tronixstuff.com/tutorials > chapter 20 CC by-sa v3.0

*/

int dt = 2000; // used for delay duration

byte rval = 0x00; // used for value sent to potentiometer

#include "Wire.h"

#define pot_address 0x2F // each I2C object has a unique bus

address, the MCP4018 is 0x2F or 0101111 in binary

void setup()

{

Wire.begin();

Serial.begin(9600);

}

void potLoop()

// sends values of 0x00 to 0x7F to pot in order to change the

resistance

// equates to 0~127

{

for (rval=0; rval<128; rval++)

{

Wire.beginTransmission(pot_address);

Wire.send(rval);

Wire.endTransmission();

Serial.print(" sent - ");

Serial.println(rval, HEX);

delay(dt);

}

}

void loop()

{

potLoop();

}

and a video demonstration:

https://sites.google.com/site/tronixstuff/home/arduino-tutorial-series-files/example20p1.pde

Example 2

Now we will read some data from an I2C device. Our test

subject is the ST Microelectronics CN75temperature sensor.

Again, we have another SMD component, but the CN75 is the

next stage larger than the part from example 20.1. Thankfully

this makes the soldering process much easier, however

still requiring some delicate handiwork:

First, a small blob of solder, then slide the IC into it.

Once that has cooled, you can complete the rest and solder

the header pins into the breakout board:

Our example schematic is as follows:

http://bit.ly/a3d6Tu
http://bit.ly/csW0Ux
http://tronixstuff.files.wordpress.com/2010/10/cn75solder1.jpg
http://tronixstuff.files.wordpress.com/2010/10/cn75solder2ss.jpg

Pins 5, 6 and 7 determine the final three bits of the device

address – in this case they are all set to GND, which sets

the address to 1001000. This allows you to use multiple

sensors on the same bus. Pin 3 is not used for basic

temperature use, however it is an output for the thermostat

functions, which we will examine in the next chapter.

As a thermometer it can return temperatures down to the

nearest half of a degree Celsius. Although that may not be

accurate enough, it was designed for automotive and

thermostat use. For more details please read the data sheet.

The CN75 stores the temperature data in two bytes, let’s call

them A and B. So we use

Wire.requestFrom(cn75address, 2)

with the second paramater as 2, as we want two bytes of data.

Which we then store using the following functions:

*a = Wire.receive(); // first received byte stored here

*b = Wire.receive(); // second received byte stored here

where *a and *b are variables of the type byte.

http://tronixstuff.files.wordpress.com/2010/10/st-cn75.pdf
http://tronixstuff.files.wordpress.com/2010/10/cn75schem.jpg

And as always, there is a twist to decoding the temperature

from these bytes. Here are two example pieces of sample data:

Example bytes one: 00011001 10000000

Example bytes two: 11100111 00000000

The bits in each byte note particular values… the most

significant bit (leftmost) of byte A determines whether it is

below or above zero degrees – 1 for below zero. The remaining

seven bits are the binary representation of the integer part

of the temperature; if it is below zero, we subtract 128 from

the value of the whole byte and multiply by -1. The most

significant bit of byte B determines the fraction, either

zero or half a degree. So as you will see in the following

example sketch (download), there is some decision making done

in showCN75data():

/* Example

ST Microelectronics CN75 Digital Temperature sensor

demonstration sketch

CC by-sa v3.0

*/

#include "Wire.h"

#define cn75address 0x48 // with pins 5~7 set to GND, the device

address is 0x48

void setup()

{

Wire.begin(); // wake up I2C bus Serial.begin(9600);

}

void getCN75data(byte *a, byte *b)

{

// move the register pointer back to the first register

Wire.beginTransmission(cn75address);/*"Hey, CN75 @ 0x48! Message

for you"*/

Wire.send(0); // "move your register pointer back to 00h"

Wire.endTransmission(); // "Thanks, goodbye..."

// now get the data from the CN75

Wire.requestFrom(cn75address, 2); // "Hey, CN75 @ 0x48 - please

send me the contents of your first two registers"

*a = Wire.receive(); // first received byte stored here

*b = Wire.receive(); // second received byte stored here

}

void showCN75data()

{

https://sites.google.com/site/tronixstuff/home/arduino-tutorial-series-files/example20p2.pde

byte aa,bb;

float temperature=0;

getCN75data(&aa,&bb);

if (aa>127) // check for below zero degrees

{

temperature=((aa-128)*-1);

if (bb==128) // check for 0.5 fraction

{

temperature-=0.5;

}

} else // it must be above zero degrees

{

temperature=aa;

if (bb==128) // check for 0.5 fraction

{

temperature+=0.5;

}

}

Serial.print("Temperature = ");

Serial.print(temperature,1);

Serial.println(" degrees C");

delay(1000);

}

void loop()

{

showCN75data();

}

And here is the result from the serial monitor:

http://tronixstuff.files.wordpress.com/2010/10/example20p2results.jpg

Example 3

Now that we know how to read and write data to devices on the

I2C bus – here is an example of doing both, with a very

popular device – the Maxim DS1307 real-time clock IC. Maxim

have written an good data sheet. For those of you new to the

world of robotronics, we use this part quite often, for

example with our Arduino RTC shield and modifications,

or blinky – the one-eyed clock. It is an 8-pin DIP IC that

allows timing with accuracy down to a few seconds a day:

Furthermore, it also has a programmable square-wave

generator. Connection and use is quite simple:

http://tronixstuff.files.wordpress.com/2010/10/ds1307.pdf
http://tronixstuff.wordpress.com/2010/05/28/lets-make-an-arduino-real-time-clock-shield/
http://tronixstuff.wordpress.com/2010/10/07/add-a-real-time-clock-to-the-freetronics-twentyten/
http://tronixstuff.wordpress.com/2010/08/02/blinky-the-one-eyed%C2%A0clock/

http://tronixstuff.files.wordpress.com/2010/10/ds1307schem.jpg
http://tronixstuff.files.wordpress.com/2010/10/ds1307registers.jpg

However some external components are required: a 32.768 kHz

crystal, a 3V battery for time retention when the power is

off, and a 10k ohm pullup resistor is required if using as a

square-wave generator. You can use the SQW and timing

simultaneously. If we have a more detailed look at the

register map for the DS1307:

We see that the first seven registers are for timing data,

the eighth is the square-wave control, and then another eight

RAM registers. In this chapter we will look at the first

eight only. Hopefully you have noticed that various time

parameters are represented by less than eight bits of data –

the DS1307 uses binary-coded decimal. But don’t panic, we

have some functions to do the conversions for us.

However, in general - remember that each bit in each

register can only be zero or one – so how do we represent a

register’s contents in hexadecimal? First, we need to find

the binary representation, then convert that to hexadecimal.

So, using the third register of the DS1307 as an example, and

a time of 12:34 pm – we will read from left to right. Bit 7

is unused, so it is 0. Bit 6 determines whether the time kept

is 12- or 24-hour time. So we’ll choose 1 for 12-hour time.

Bit 5 (when bit 6 is 0) is the AM/PM indicator – choose 1 for

PM. Bit 4 represents the left-most digit of the time, that is

the 1 in 12:34 pm. So we’ll choose 1. Bits 3 to 0 represent

the BCD version of 2 which is 0010.

So to store 12pm as hours we need to write 00110010 as

hexadecimal into the hours register – which is 0×32.

Reading data from the DS1307 should be easy for you now,

reset the register pointed, then request seven bytes of data

and receive them into seven variables. The device address is

0×68. For example:

Wire.beginTransmission(0x68);

http://tronixstuff.wordpress.com/2010/05/20/getting-started-with-arduino-%E2%80%93-chapter-seven/

Wire.send(0);

Wire.endTransmission();

Wire.requestFrom(DS1307_I2C_ADDRESS, 7);

*second = bcdToDec(Wire.receive();

*minute = bcdToDec(Wire.receive();

*hour = bcdToDec(Wire.receive();

*dayOfWeek = bcdToDec(Wire.receive());

*dayOfMonth = bcdToDec(Wire.receive());

*month = bcdToDec(Wire.receive());

*year = bcdToDec(Wire.receive());

At which point the time data will need to be converted to

decimal numbers, which we will take care of in the example

sketch later. Setting the time, or controlling the square-

wave output is another long operation – you need to write

seven variables to set the time or eight to change the

square-wave output. For example, the time:

Wire.beginTransmission(0x68);

Wire.send(0);

Wire.send(decToBcd(second));

Wire.send(decToBcd(minute));

Wire.send(decToBcd(hour));

Wire.send(decToBcd(dayOfWeek));

Wire.send(decToBcd(dayOfMonth));

Wire.send(decToBcd(month));

Wire.send(decToBcd(year));

Wire.endTransmission();

The decToBcd is a function defined in our example to convert

the decimal numbers to BCD suitable for the DS1307. You could

insert another Wire.send(); before the end transmission, and

this would set the square wave output. There are five options

for the parameter: 0×00 for off, 0×10 for 1Hz, 0×11 for 4.096

kHz, 0×12 for 8.192 kHz and 0×13 for 32.768 kHz.

